Enhancement of cell migration and wound healing by nano-herb ointment formulated with biosurfactant, silver nanoparticles and Tridax procumbens

Front Microbiol. 2023 Aug 2;14:1225769. doi: 10.3389/fmicb.2023.1225769. eCollection 2023.

ABSTRACT

INTRODUCTION: Ointments are generally used as a therapeutic agent for topical medication or transdermal drug delivery, such as wound healing and skin lesions.

METHODS: In this study, Tridax procumbens plant extract (0.7 g/mL) was used to prepare herbal-infused oil as the oil phase and gelatin-stabilized silver nanoparticle (G-AgNPs) (0.3 g/mL) as the aqueous phase. To blend the oil and aqueous phases, rhamnolipid biosurfactant with a critical micelle concentration of 55 mg/L from strain Pseudomonas aeruginosa PP4 has been used for herb ointment preparation. The average size of the synthesized G-AgNPs was observed between 10-30 nm and confirmed as spherical-shaped particles by TEM analysis. Subsequently, GC-MS and FTIR characterization are used to confirm herb ointment’s chemical and functional characteristics.

RESULTS: Based on the antibacterial studies, the highest microbial growth inhibition was observed for herb ointment, about 19.5 mm for the pathogen Staphylococcus aureus at the concentration of 100 μg/mL, whereas 15.5 mm was obtained for Escherichia coli, respectively. In addition, the minimum inhibitory concentration (MIC) assay showed negligible bacterial growth at 100 μg/mL for S. aureus and E. coli, respectively. Moreover, the cell viability assay for herb ointment exhibited low cytotoxic activity at higher concentrations (100 μg/mL) in Vero cell lines. In this study, wound scratch assay showed a significant cell migration rate (90 ± 2%) in 3 days of incubation than the control (62 ± 2%).

DISCUSSION: As a result, the biosurfactant-based nano-topical herb ointment revealed a low cytotoxic and higher cell migration capacity. Altogether, these findings highlighted the utility of this herb ointment in therapeutic applications such as wound healing.

PMID:37601383 | PMC:PMC10434256 | DOI:10.3389/fmicb.2023.1225769