Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions

Microbiol Res. 2023 Aug 16;276:127479. doi: 10.1016/j.micres.2023.127479. Online ahead of print.

ABSTRACT

The role of endophytes in maintaining healthy plant ecosystems and holding promise for agriculture and food security is deeply appreciated. In the current study, we determine the community structure, spatial distribution, chemical diversity, and ecological functions of fungal endophytes of Rosa damascena growing in the North-Western Himalayas. Culture-dependent methods revealed that R. damascena supported a rich endophyte diversity comprising 32 genera and 68 OTUs. The diversity was governed by climate, altitude, and tissue type. Species of Aspergillus, Cladosporium, Penicillium, and Diaporthe were the core endophytes of the host plant consisting of 48.8% of the endophytes collectively. The predominant pathogen of the host was Alternaria spp., especially A. alternata. GC-MS analyses affirmed the production of diverse arrays of volatile organic compounds (VOC) by individual endophytes. Among the primary rose oil components, Diaporthe melonis RDE257, and Periconia verrucosa RDE85 produced phenyl ethyl alcohol (PEA) and benzyl alcohol (BA). The endophytes displayed varied levels of plant growth-promoting, colonization, and anti-pathogenic traits. Between the selected endophytes, P. verrucosa and D. melonis significantly potentiated plant growth and the flavonoids and chlorophyll content in the host. The potential of these two endophytes and their metabolites PEA and BA was confirmed on Nicotiana tabacum. The treatments of the metabolites and individual endophytes enhanced the growth parameters in the model plant significantly. The results imply that P. verrucosa and D. melonis are potential plant growth enhancers and their activity may be partially due to the production of PEA and BA. Thus, R. damascena harbors diverse endophytes with potential applications in disease suppression and host growth promotion. Further investigations at the molecular level are warranted to develop green endophytic agents for sustainable cultivation of R. damascena and biocontrol of leaf spot disease.

PMID:37639964 | DOI:10.1016/j.micres.2023.127479