Theoretical Insights into the Catalytic Oxidation of Phenols and Arylamines by Laccases via the Proton-Coupled Electron Transfer Mechanism

J Phys Chem B. 2024 Sep 4. doi: 10.1021/acs.jpcb.4c04426. Online ahead of print.

ABSTRACT

Laccases play a vital role in the degradation of toxic phenolic and aromatic amine compounds, generating considerable attention in ecological pollution remediation. However, the distinct mechanism of the laccase-catalyzed oxidation of phenols and arylamines remains unclear. Here, we examined the catalytic oxidation mechanisms of phenols and arylamines by Trametes versicolor (TvL) and Melanocarpus albomyces (MaL) laccases using molecular docking, quantum mechanics (QM), and QM/molecular mechanics (QM/MM) calculations. We docked four phenolic substrates, including 1,2-benzenediol, 2-propenylphenol, 2-methoxyhydroquinone, and 2-aminophenol, to TvL and identified their favorable reaction conformations, in which Asp206 of TvL plays an important role in binding substrates to promote the catalytic reactions. Based on the docking conformations, the QM and QM/MM calculations revealed that the oxidation reactions take place via a proton-coupled electron transfer mechanism, with proton transfer (PT) from the hydroxyl groups of substrates to the side chain of Asp206 and synchronous electron hopping from the aromatic ring of substrates to the type one copper (T1Cu) of TvL. For the MaL and 2,6-dimethoxyphenol interacting system, the oxidation reactions occur through a concerted double-proton-coupled electron transfer mechanism with a water-mediated indirect PT from the hydroxyl group of substrates to the conserved Glu235 and electron hopping from the substrate to T1Cu at the same time. The corresponding energy barriers change from 0.7 to 18.4 kcal/mol, indicating the different degradation rates of the phenols and arylamines by laccases. These findings provide insights into the oxidation mechanism of phenols and arylamines by laccases and may extend the applications of laccases.

PMID:39231121 | DOI:10.1021/acs.jpcb.4c04426