The synthetic cannabinoid 5F-MDMB-PICA enhances the metabolic activity and angiogenesis in human brain microvascular endothelial cells by upregulation of VEGF, ANG-1, and ANG-2

Toxicol Res (Camb). 2023 Aug 23;12(5):796-806. doi: 10.1093/toxres/tfad068. eCollection 2023 Oct.

ABSTRACT

Brain angiogenesis, the formation of new blood vessels from existing brain vasculature, has been previously associated with neural plasticity and addictive behaviors related to substances. Synthetic cannabinoids (SCs) have become increasingly popular due to their ability to mimic the effects of cannabis, offering high potency and easy accessibility. In the current study, we reveal that the SC 5F-MDMB-PICA, the most common SC in the United States in 2019, increases cell metabolic activity and promotes angiogenesis in human brain microvascular endothelial cells (HBMECs). First, we performed an MTT assay to evaluate the effects of 5F-MDMB-PICA treatment at various concentrations (0.0001 μM, 0.001 μM, 0.01 μM, 0.1 μM, and 1 μM) on HBMECs metabolic activity. The results demonstrated higher concentrations of the SC improved cell metabolic activity. Furthermore, 5F-MDMB-PICA treatment enhanced tube formation and migration of HBMECs in a dosage-dependent manner. Additionally, the mRNA, secreted protein, and intracellular protein levels of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2, which are involved in the regulation of angiogenesis, as well as the protein levels of cannabinoid receptor type-1, were all increased following treatment with 5F-MDMB-PICA. Notably, the phosphorylation levels at Serine 9 residue of glycogen synthase kinase-3β were also increased in the 5F-MDMB-PICA treated HBMECs. Collectively, our findings demonstrate that 5F-MDMB-PICA can enhance angiogenesis in HBMECs, suggesting the significant role of angiogenesis in the response to SCs. Manipulating this interaction may pave the way for innovative treatments targeting SC addiction and angiogenesis-related conditions.

PMID:37915478 | PMC:PMC10615825 | DOI:10.1093/toxres/tfad068