Protective role of curcumin on aflatoxin B1-induced TLR4/RIPK pathway mediated-necroptosis and inflammation in chicken liver

Ecotoxicol Environ Saf. 2022 Feb 18;233:113319. doi: 10.1016/j.ecoenv.2022.113319. Online ahead of print.

ABSTRACT

This study set out to assess the mitigative effects of curcumin on AFB1-induced necroptosis and inflammation in chicken liver. Ninety-six one-day-old AA broiler chickens were separated into four groups, including control group, AFB1 (1 mg/kg) group, curcumin (300 mg/kg) + AFB1 (1 mg/kg) group and curcumin (300 mg/kg) group. After 28 days treatment, livers were collected for different experimental analyses. The morphological observation results showed obvious necrotic characteristics, including cell swelling, rupture of cell and mitochondrial membranes and inflammation in chicken livers. AFB1 exposure increased oxidative stress index (ROS and MDA) and decreased the antioxidant activity markers (SOD, CAT and GSH) and ATPase activities in chickens’ liver. ELISA results showed that AFB1 exposure significantly induced the cytokines (TNF-α, iNOS, IL-6 and IL-1β) release from the liver tissues. While, western blot and qRT-PCR results showed that the protein and mRNA expressions of inflammatory (TLR4/myd88/NF-κB) and necroptosis (RIPK1/RIPK3/MLKL) genes were up-regulated by AFB1 exposure. We suspect that signal crosstalk between TLR4 and TNF-α triggers inflammation and RIPK1/RIPK3 mediating necroptosis in AFB1-induced chicken liver injury. Curcumin can regulate the TLR4/RIPK signaling pathway, reduced oxidative stress biomarkers and inflammatory cytokines levels and attenuated the expression of necroptosis and inflammation genes altered by AFB1 to reduce necroptosis of chicken liver tissue. In conclusion, curcumin can protect against AFB1-induced necroptosis and inflammation by TLR4/RIPK pathway in chicken liver.

PMID:35189522 | DOI:10.1016/j.ecoenv.2022.113319