Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line

Plants (Basel). 2022 May 10;11(10):1280. doi: 10.3390/plants11101280.

ABSTRACT

This study evaluates the volatile metabolic constituents and anticancer potential of essential oils distilled from the rhizomes of four Malaysian Zingiber officinale Roscoe (Zingiberaceae family) varieties (Bentong (BE), Cameron Highlands (CH), Sabah (SA), and Bara (BA)). The ginger essential oils were analyzed by gas chromatography coupled with quadrupole mass spectrometry (GC qMS). A total of 58 secondary compounds were tentatively identified, representing 82.6-87.4% of the total ion count. These metabolites comprise mainly of monoterpene hydrocarbons (19.7-25.5%), oxygenated monoterpenes (23.6-33.7%), sesquiterpene hydrocarbons (21.3-35.6%), oxygenated sesquiterpenes (1.5-3.9%), and other minor classes of compounds (0.7-2.7%). Principal component analysis (PCA) enabled differentiation of the analyzed ginger essential oils according to their varieties, with respect to their metabolites and relative quantities. The antiproliferative activity against the HeLa cervical cancer cell line was investigated via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The oils were found to exhibit strong antiproliferative activities with IC50 values of 23.8, 35.3, 41.3, and 42.5 μg/mL for BA, BE, SA, and CH, respectively. These findings suggest that the differences among the secondary metabolites and their abundance in different varieties of Z. officinale essential oils appear to be related to their antiproliferative potential. The strong antiproliferative effects of these oils signified their potential in the prevention and chemotherapy of cervical carcinoma treatment.

PMID:35631703 | DOI:10.3390/plants11101280