Inhibitory Potential of Different Bilberry (Vaccinium myrtillus L.) Extracts on Human Salivary α-Amylase

Views: 65
Read Time:1 Minute, 23 Second

Molecules. 2023 Aug 2;28(15):5820. doi: 10.3390/molecules28155820.


Recently, consumer preferences for bilberries have increased markedly. This fact is probably related to their natural constituents, such as phenolic compounds including anthocyanins and tannins, as well as the vitamins and minerals they contain. Phenolic compounds are known for their numerous beneficial effects on human health. Moreover, bilberry fruits have been shown to inhibit the activity of carbohydrate hydrolyzing enzymes, which can significantly decrease the postprandial increase in blood glucose levels. Thus, the aim of the present study is to investigate the inhibitory effect of Vaccinium myrtillus L. extracts on key enzyme α-amylase, linked to type 2 diabetes. No data have been published on the inhibitory properties of Vaccinium myrtillus L. fruits growing wild in Bulgaria against carbohydrate enzymes. Bilberry extracts were analyzed for total polyphenols, total anthocyanin content, antioxidant activity and their inhibitory properties against α-amylase. The contents of flavonols, anthocyanins and stilbenes were determined by HPLC analysis. The identified flavonols in the analyzed bilberry extracts were mainly represented by quercetin derivatives as rutinoside. The predominant anthocyanins for both aqueous and organic solvents were delphinidin-3-galactoside and malvidin-3-glucoside. The results revealed that bilberry extracts are effective inhibitors of α-amylase, with IC50 values from 20.8 to 194.8 μg GAE/mL. All the samples proved to have antioxidant activity measured by three different in vitro assays (FRAP, CUPRAC and DPPH). The inhibitory properties of V. myrtillus L. extracts may provide a new direction in the development and research of new pharmaceuticals for the suppression of postprandial hyperglycemia in diabetic patients.

PMID:37570789 | DOI:10.3390/molecules28155820

Generated by Feedzy