Impairment of Endothelial Function by Aerosol From Marijuana Leaf Vaporizers

Views: 13
Read Time:1 Minute, 29 Second

J Am Heart Assoc. 2023 Nov 28:e032969. doi: 10.1161/JAHA.123.032969. Online ahead of print.


BACKGROUND: Marijuana leaf vaporizers, which heat plant material and sublimate Δ-9-tetrahydrocannabinol without combustion, are popular alternatives to smoking cannabis that are generally perceived to be less harmful. We have shown that smoke from tobacco and marijuana, as well as aerosol from e-cigarettes and heated tobacco products, impair vascular endothelial function in rats measured as arterial flow-mediated dilation (FMD).

METHODS AND RESULTS: We exposed 8 rats per group to aerosol generated by 2 vaporizer systems (Volcano and handheld Yocan) using marijuana with varying Δ-9-tetrahydrocannabinol levels, in a single pulsatile exposure session of 2 s/min over 5 minutes, and measured changes in FMD. To model secondhand exposure, we exposed rats for 1 minute to diluted aerosol approximating release of uninhaled Volcano aerosol into typical residential rooms. Exposure to aerosol from marijuana with and without cannabinoids impaired FMD by ≈50%. FMD was similarly impaired by aerosols from Yocan (237 °C), and from Volcano at both its standard temperature (185 °C) and the minimum sublimation temperature of Δ-9-tetrahydrocannabinol (157 °C), although the low-temperature aerosol condition did not effectively deliver Δ-9-tetrahydrocannabinol to the circulation. Modeled secondhand exposure based on diluted Volcano aerosol also impaired FMD. FMD was not affected in rats exposed to clean air or water vapor passed through the Volcano system.

CONCLUSIONS: Acute direct exposure and modeled secondhand exposure to marijuana leaf vaporizer aerosol, regardless of cannabinoid concentration or aerosol generation temperature, impair endothelial function in rats comparably to marijuana smoke. Our findings indicate that use of leaf vaporizers is unlikely to reduce the vascular risk burden of smoking marijuana.

PMID:38014661 | DOI:10.1161/JAHA.123.032969

Generated by Feedzy