Epigallocatechin-3-gallate-induced tolerance to cadmium stress involves increased flavonoid synthesis and nutrient homeostasis in tomato roots

Plant Physiol Biochem. 2024 Mar 7;208:108468. doi: 10.1016/j.plaphy.2024.108468. Online ahead of print.

ABSTRACT

Cadmium (Cd) is a toxic heavy metal, increasingly accumulating in the environment and its presence in various environmental compartments represents a significant risk to human health via the food chain. Epigallocatechin-3-Gallate (EGCG) is a prominent secondary metabolite, which can safeguard plants from biotic and abiotic stress. However, the role of EGCG in flavonoid synthesis, nutrient acquisition and reactive oxygen species (ROS) metabolism under Cd stress remains unclear. Here, we examined the effects of EGCG and Cd treatment on leaf photochemical efficiency, cell ultrastructure, essential element acquisition, antioxidant system, and secondary metabolism in tomato (Solanum lycopersicum L.). The results showed that O2•-, H2O2, and malondialdehyde levels increased after Cd treatment, but Fv/Fm decreased significantly, suggesting that Cd induced oxidative stress and photoinhibition. However, EGCG mitigated the adverse effects of Cd-induced phytotoxicity in both the roots and leaves. A decrease in ROS accumulation under EGCG + Cd treatment was mainly attributed to the significant enhancement in antioxidant enzyme activity, flavonoid content, and PHENYLALANINE AMMONIA-LYASE expression in roots. Moreover, EGCG reduced Cd content but increased some essential nutrient contents in tomato plants. Transmission electron microscopy-based observations revealed that EGCG treatment safeguards leaf and root cell ultrastructure under Cd stress. This implies that tomato plants subjected to Cd stress experienced advantageous effects upon receiving EGCG treatment. The present work elucidated critical mechanisms by which EGCG induces tolerance to Cd, thereby providing a basis for future investigations into environmentally sustainable agricultural practices in areas contaminated with heavy metals, for utilizing naturally occurring substances found in plants.

PMID:38507840 | DOI:10.1016/j.plaphy.2024.108468