Enhancing resource recovery via cranberry syrup waste at the Wisconsin Rapids WRRF: An experimental and modeling study

J Environ Manage. 2022 Dec 1;323:116190. doi: 10.1016/j.jenvman.2022.116190. Epub 2022 Sep 24.

ABSTRACT

The Wisconsin Rapids Wastewater Treatment Plant (WRWWTP) is faced with a more stringent effluent phosphorus requirement that will drive capital investment between 2020 and 2025. The facility will need to achieve a monthly average value of 0.36 mg L-1 of total phosphorus (TP). While the facility has sufficient influent carbon to drive a conventional enhanced biological phosphorus removal (EBPR) configuration, the existing infrastructure makes the addition of influent selector zones cost prohibitive. Underutilized aeration basin capacity was repurposed for testing return activated sludge (RAS) fermentation. The WRWWTP began pilot testing of RAS fermentation in April 2021. The facility moved through a series of operational setpoints to optimize phosphorus removal in a sidestream RAS (SSR) configuration, including RAS diversion, decrease of DO in aeration basins and chemical dosing shutoff. One of the key implementations was the addition of cranberry syrup waste to provide additional carbon for RAS fermentation, converting the process to a SSR plus carbon (SSRC) configuration. By the end of the testing period, effluent total phosphorus was averaging less than 0.4 mg L-1 with no chemical addition. A model was developed in the SUMO platform and was used to capture orthophosphate trends during the testing period. The model investigated microbial population dynamics and found that the operational changes including RAS diversion, chemical dosing shutoff and cranberry syrup waste addition impacted the enrichment of phosphorus accumulating organisms (PAO). After performing a sensitivity analysis on hydrolysis parameters, the predicted hydrolysis rate around 1.8-1.9 mg COD g VSS-1 hr-1 was found to match the batch rate testing data. This is the first study where cranberry syrup waste was used to successfully enhance EBPR performance, resulting in 90% TP removal. While further research is needed regarding the composition of the waste matrix and the microbial community composition, this expands the routes for resource recovery in the field of wastewater treatment.

PMID:36261961 | DOI:10.1016/j.jenvman.2022.116190