Curcumin Alleviates Arsenic Trioxide-Induced Inflammation and Pyroptosis via the NF-κB/NLRP3 Signaling Pathway in the Hypothalamus of Ducks

Biol Trace Elem Res. 2022 Jun 23. doi: 10.1007/s12011-022-03321-4. Online ahead of print.

ABSTRACT

Arsenic (As) as a neurotoxic environmental pollutant has attracted extensive attention. Curcumin (Cur) is a natural antioxidant that shows an excellent protective effect against arsenic trioxide (ATO)-induced toxicity in many animal organs. However, the mechanism of Cur against ATO-induced hypothalamic toxicity in ducks has not yet been fully elucidated. Here, ducks were treated with ATO and/or Cur during 28 days; the results showed that ATO exposure induced growth retardation, messy feathers, and abnormal posture in ducks. Moreover, ATO caused neuron vacuolar degeneration and disintegration in the hypothalamus of ducks. Simultaneously, ATO induced blood-brain barrier damage, downregulated the expression of ZO-1, Occludin, and mediated NF-κB activation, resulting in an increase in inflammatory factors (TLR-4, NF-κB, TNF-α, IL-2, and IL-6). Furthermore, ATO increased the production of pyroptosis-related factors (Caspase-1, IL-18, IL-1), exacerbating the inflammatory damage through NLRP3-mediated inflammasome activation. Cur, on the other hand, exerted excellent inhibitory effects on inflammation and pyroptosis. In summary, our study revealed that ATO triggered inflammation and pyroptosis by modulating NF-κB/NLRP3 signaling pathways in the hypothalamus of ducks, and Cur can alleviate inflammation and pyroptosis caused by ATO. Therefore, as a plant extract, Cur has the potential to prevent and cure ATO-induced hypothalamus toxicity.

PMID:35737258 | DOI:10.1007/s12011-022-03321-4