Analysis of root volatiles and functional characterization of a root-specific germacrene A synthase in Artemisia pallens

Planta. 2024 Feb 3;259(3):58. doi: 10.1007/s00425-024-04334-0.

ABSTRACT

The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes β-elemene, neryl isovalerate, β-selinene, and α-selinene, and trace amounts of monoterpenes β-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of β-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that β-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.

PMID:38308700 | DOI:10.1007/s00425-024-04334-0