Activation of ventral hippocampal CB1 receptors inhibits ketamine-induced anxiogenic-like behavior: Alteration of BDNF/c-Fos levels in the mouse hippocampus

Brain Res. 2023 Apr 28:148378. doi: 10.1016/j.brainres.2023.148378. Online ahead of print.

ABSTRACT

Considering the increasing usage of ketamine as a recreational drug with hallucinogenic properties and also scarce studies about receptor systems responsible for its effects, in the present study we aimed to investigate whether the activation of the ventral hippocampal (VH) CB1 cannabinoid receptors affects the anxiety-like behaviors induced by ketamine. Also, the levels of BDNF and c-Fos proteins in the mouse hippocampus were measured following the treatments. For this purpose, male NMRI mice were cannulated bilaterally in the VH with a stereotaxic apparatus. Anxiety properties and protein changes were measured using elevated plus-maze (EPM) and western blotting respectively. The results revealed that intraperitoneal (i.p.) administration of ketamine (5-20 mg/kg) significantly decreased the percentage of open arm time (%OAT) and open arm entry (%OAE) in the EPM with no alteration in the locomotor activity suggesting an anxiogenic-like behavior to ketamine. Furthermore, ketamine administration (10 mg/kg, i.p.) increased BDNF and c-Fos levels in the hippocampus. Interestingly, activation of the VH CB1 receptors by ACPA (0.5-4 ng/mouse) inhibited the anxiogenic-like behaviors produced by ketamine, whereas the microinjection of the same doses of ACPA into VH by itself had no effect on the EPM parameters. Hippocampal levels of BDNF and c-Fos decreased after treatment with combined ketamine with ACPA. These results suggest the therapeutic potency of cannabinoid receptor agonists for ketamine-induced anxiogenic-related responses. This effect might be at least partially mediated by the alteration of BDNF and c-Fos signaling in the hippocampus.

PMID:37121426 | DOI:10.1016/j.brainres.2023.148378