A quantitative case study assessment of changes to hepatic metabolism from nonlactating grazing dairy cows consuming a large proportion of their diet as fodder beet

J Dairy Sci. 2019 Sep;102(9):8559-8570. doi: 10.3168/jds.2018-16009. Epub 2019 Jul 10.

ABSTRACT

Because of its high yield and the ability of cows to graze it in situ, fodder beet (FB) has become a popular crop in grazing systems, particularly for nonlactating cows. Due to its high sugar content, however, the transition to FB must be managed carefully to avoid rumen acidosis and associated metabolic dysfunction. The initial consumption of FB reduces ruminal pH; however, it is unclear whether this affects liver metabolism and results in systemic inflammation, as has been reported during subacute ruminal acidosis from high-grain diets. We used a quantitative case study approach to undertake additional measurements on a project demonstrating the effects of FB on urinary nitrogen excretion. The objective of our component, therefore, was to determine whether the inclusion of high rates of FB in the diet of nonlactating cows changed indicators of hepatic metabolism relative to a standard diet for nonlactating grazing cows. During the nonlactating period, multiparous, pregnant Holstein-Friesian cows were randomly assigned (n = 15 per treatment) to either pasture (8 kg of DM/cow per day) with corn silage (4 kg of DM/cow per day; PA) or transitioning onto an FB diet (8 kg of DM/cow per day) with pasture silage (4 kg of DM/cow per day; BT) over 14 d. Blood was sampled and the liver was biopsied during the adaptation period and after 7 d of full diet allocation. The hepatic expression of genes involved in peroxisomal oxidation was increased in cows adapting to FB, whereas the expression of genes involved in mitochondrial oxidation was increased when cows were on their full allocation of FB. These results indicate changes to fatty acid metabolism with FB consumption. Expression of 2 genes involved in the unfolded protein response was greater during the adaptation period in cows consuming FB, potentially reflecting negative effects of transitioning onto the FB diet on hepatic metabolism. Interestingly, expression of genes involved in the methionine cycle was increased in the BT cows. We hypothesize that this is a result of FB betaine absorption, although it is unclear to what extent betaine escapes ruminal degradation. While on the full diet allocation, there were lower serum concentrations of markers of hepatic stress in BT cows and no difference in expression of genes involved in oxidative stress compared with pasture-fed cows. However, there was an increase in plasma haptoglobin concentrations, indicative of an acute inflammatory response in BT cows. From this case study, we conclude that the results indicate no negative effects of the FB diet on liver metabolism and, possibly, positive effects on hepatic function. It appears, therefore, that the transition of nonlactating cows onto an FB diet can be managed to minimize the negative effects of the high sugar intake. Further research on the amount of betaine that escapes ruminal degradation in cows consuming FB would be of value to better understand whether betaine reduces liver damage in dairy cows consuming FB.

PMID:31301843 | DOI:10.3168/jds.2018-16009