A Novel ω-3 Acid Ethyl Ester Formulation Incorporating Advanced Lipid TechnologiesTM (ALT®) Improves Docosahexaenoic Acid and Eicosapentaenoic Acid Bioavailability Compared with Lovaza®

Clin Ther. 2017 Mar;39(3):581-591. doi: 10.1016/j.clinthera.2017.01.020. Epub 2017 Feb 9.

ABSTRACT

PURPOSE: The US Food and Drug Administration has approved several highly purified ω-3 fatty acid prescription drugs for the treatment of severe hypertriglyceridemia. These differ in the amounts and forms of docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). This study compared the bioavailability of SC401 (1530 mg EPA-ethyl esters [EEs] and DHA-EEs plus Advanced Lipid Technologies⁎ [ALT†], a proprietary lipid-delivery platform to improve absorption), with. Lovaza‡ (3600 mg ω-3, primarily EPA-EEs and DHA-EEs) under low-fat feeding conditions.

METHODS: This was a Phase I, randomized, open-label, single-dose, 2-way crossover study in healthy participants housed from day -3 to day 2 in each treatment period. Blood samples for pharmacokinetic measurements were collected before and after dosing, and safety profile and tolerability were assessed.

FINDINGS: In unadjusted analyses, SC401 had 5% lower Cmax and approximately the same AUC0-last of EPA + DHA total lipids compared with Lovaza. When adjusted for baseline, SC401 had ~6% higher Cmax and 18% higher AUC0-last for EPA + DHA total lipids, and dose- and baseline-adjusted analyses found that SC401 had ~149% higher Cmax and 178% higher AUC0-last than Lovaza for EPA + DHA total lipids. The Tmax was also substantially longer with Lovaza (~10 hours) than with SC401 (~6 hours).

IMPLICATIONS: These results indicate that SC401, an ω-3 acid EE formulation containing ALT† achieved high bioavailability of EPA and DHA, at a lower dose (1530 mg) than Lovaza (3600 mg), under low-fat feeding conditions.

PMID:28189364 | DOI:10.1016/j.clinthera.2017.01.020